Prof. Dr. Alfred Toth

Permutationen von Konstanten und Variablen in Zeichenrelationen

1. Permutiert man nicht nur die Konstanten, sondern auch die Variablen einer Zeichenrelation, so, wie in der folgenden Matrix dargestellt, wo also x, y und z alle drei Werte der Konstanten 1, 2, 3 (und umgekehrt) annehmen können

	X	У	Z
1	1.x	1.y	1.z
2	2.x	2.y	2.z
3	3.x	3.y	3.z,

so kann man die Anzahl und Struktur von Transpositionsfeldern (vgl. zuletzt Toth 2025a, b) beträchtlich erhöhen und vor allem alle "axiologischen" 6 mal 6=36 Möglichkeiten einer ternären bifunktoriellen, d.h. triadisch-trichotomischen Semiotik ausschöpfen.

2. Permutationen von Variablen in Zeichenrelationen

(xyz) = (123)								
3.z	2.y	1.x	×	x.1	y.2	z.3		
3.z	1.x	2.y	×	y.2	x.1	z.3		
2.y	3.z	1.x	×	x.1	z.3	y.2		
2.y	1.x	3.z	×	z.3	x.1	y.2		
1.x	3.z	2.y	×	y.2	z.3	x.1		
1.z	2.y	3.z	×	z.3	y.2	z.1		
(xyz) = (132)								
3.y	2.z	1.x	×	x.1	z.2	y.3		
3.y	1.x	2.z	×	z.2	x.1	y.3		
2.z	3.y	1.x	×	x.1	y.3	z.2		
2.z	1.x	3.y	×	y.3	x.1	z.2		
1.x	3.y	2.z	×	z.2	y.3	x.1		
1.x	2.z	3.y	×	y.3	z.2	x.1		

$$(xyz) = (231)$$

$$3.y \quad 2.x \quad 1.z \quad \times \quad z.1 \quad x.2 \quad y.3$$

3.y 1.z
$$2.x \times x.2 = z.1 = y.3$$

$$2.x \quad 3.y \quad 1.z \quad \times \quad z.1 \quad y.3 \quad x.2$$

$$2.x$$
 $1.z$ $3.y$ \times $y.3$ $z.1$ $x.2$

1.z 3.y
$$2.x \times x.2 y.3 z.1$$

$$1.z \quad 2.x \quad 3.y \quad \times \quad y.3 \quad x.2 \quad z.1$$

$$(xyz) = (213)$$

$$3.z$$
 $2.x$ $1.y$ \times $y.1$ $x.2$ $z.3$

$$3.z \quad 1.y \quad 2.x \quad \times \quad x.2 \quad y.1 \quad z.3$$

$$2.x \quad 3.z \quad 1.y \quad \times \quad y.1 \quad z.3 \quad x.2$$

$$2.x$$
 $1.y$ $3.z$ \times $z.3$ $y.1$ $x.2$

1.y 3.z
$$2.x \times x.2 = z.3 + y.1$$

1.y 2.x 3.z
$$\times$$
 z.3 x.2 y.1

$$(xyz) = (321)$$

$$3.x \quad 2.y \quad 1.z \quad \times \quad z.1 \quad y.2 \quad x.3$$

$$3.x \quad 1.z \quad 2.y \quad \times \quad y.2 \quad z.1 \quad x.3$$

$$2.y$$
 $3.x$ $1.z$ \times $z.1$ $x.3$ $y.2$

$$2.y \quad 1.z \quad 3.x \quad \times \quad x.3 \quad z.1 \quad y.2$$

$$1.z$$
 $3.x$ $2.y$ \times $y.2$ $x.3$ $z.1$

$$1.z$$
 $2.y$ $3.x$ \times $x.3$ $y.2$ $z.1$

$$(xyz) = (312)$$

$$3.x$$
 $2.z$ $1.y$ \times $y.1$ $z.2$ $x.3$

$$3.x$$
 $1.y$ $2.z$ \times $z.2$ $y.1$ $x.3$

$$2.z \quad 3.x \quad 1.y \quad \times \quad y.1 \quad x.3 \quad z.2$$

$$2.z \quad 1.y \quad 3.x \quad \times \quad x.3 \quad y.1 \quad z.2$$

1.y
$$3.x$$
 $2.z$ × $z.2$ $x.3$ $y.1$

1.y 2.z $3.x \times x.3 = z.2 = y.1$

Literatur

Toth, Alfred, Invariante semiotische Transpositionsfelder. In: Electronic Journal for Mathematical Semiotics, 2025a

Toth, Alfred, Transpositionelle Struktur von Variablen in Zeichenrelationen. In: Electronic Journal for Mathematical Semiotics, 2025b

20.9.2025